Et 0029 B

2020年12月11日
Download: http://gg.gg/ngh82
Invitrogen
*Et0021b7e44776
*Et 0029 Belgique
*Et 0029 Black
*Benq Et-0029-b Driver
*Et0021b7035a48NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscienceantibodyCD2 Monoclonal Antibody (RPA-2.10), Functional Grade, eBioscience™
BenQ schematic diagram service manual circuit diagram wiring schema repair instruction guide user manual free pdf download. Service Handbuch Schaltungen Reparaturanleitung Bedienungsanleitungen kostenlos pdf download.
Bulletin B-0029-01. The purpose of this bulletin is to advise all fireworks sellers and distributors, as well as local jurisdictions with enforcement authority over fireworks safety, of pertinent provisions of state law and rules of the Texas Department of Insurance (Department). We work hard to protect your security and privacy. Our payment security system encrypts your information during transmission. We don’t share your credit card details with third-party sellers, and we don’t sell your information to others. Limperopoulos C, Bassan H, Sullivan NR, et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors. Doi: 10.1542/peds.2007-2158 PubMed Google Scholar Crossref. B; G; Y; A +5 In this article. Cannot implicitly convert type ’type’ to ’type’ The compiler requires an explicit conversion. For example, you may need to cast an r-value to be the same type as an l-value. Or, you must provide conversion routines to support certain operator overloads. Conversions must occur when assigning a variable of one type.16-0029-85500µgUS 356monoclonalmousenonconjugatedRPA-2.10crab eating macaque, baboon , human, mouse, chimpanzee, pigs , rhesus macaqueimmunohistochemistry, neutralization, flow cytometryPublished Application/Species/Sample/DilutionReference
*flow cytometry; human; fig 7Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed publisher
*flow cytometry; mouse; loading ...Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed publisher
*flow cytometry; humanGrieco A, Billett H, Green N, Driscoll M, Bouhassira E. Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1. PLoS ONE. 2015;10:e0129431 pubmed publisher
*flow cytometry; humanWilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed publisher
*flow cytometry; humanSereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed publisher
*flow cytometry; mouseTimblin G, Schlissel M. Ebf1 and c-Myb repress rag transcription downstream of Stat5 during early B cell development. J Immunol. 2013;191:4676-87 pubmed publisher
*immunohistochemistry; humanLiang H, Reinhardt R, Bando J, Sullivan B, Ho I, Locksley R. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol. 2011;13:58-66 pubmed publisher
*flow cytometry; humanPark C, Majeti R, Weissman I. In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. Nat Protoc. 2008;3:1932-40 pubmed publisher Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed publisher Cho J, Xu Z, Parthasarathy U, Drashansky T, Helm E, Zuniga A, et al. Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nat Commun. 2019;10:701 pubmed publisher Denton A, Innocentin S, Carr E, Bradford B, Lafouresse F, Mabbott N, et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J Exp Med. 2019;216:621-637 pubmed publisher Seeholzer T, Kurz S, Schlauderer F, Woods S, Gehring T, Widmann S, et al. BCL10-CARD11 Fusion Mimics an Active CARD11 Seed That Triggers Constitutive BCL10 Oligomerization and Lymphocyte Activation. Front Immunol. 2018;9:2695 pubmed publisher Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed publisher Kostrzewski T, Borg A, Meng Y, Filipovic I, Male V, Wack A, et al. Multiple Levels of Control Determine How E4bp4/Nfil3 Regulates NK Cell Development. J Immunol. 2018;200:1370-1381 pubmed publisher Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed Lim S, Kim T, Lee J, Sonn C, Kim K, Kim J, et al. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy. Cancer Res. 2013;73:2598-607 pubmed publisher Kap Y, van Meurs M, van Driel N, Koopman G, Melief M, Brok H, et al. A monoclonal antibody selection for immunohistochemical examination of lymphoid tissues from non-human primates. J Histochem Cytochem. 2009;57:1159-67 pubmed publisher Schierloh P, Yokobori N, Aleman M, Landoni V, Geffner L, Musella R, et al. Mycobacterium tuberculosis-induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving Toll-like receptors 2 and 4 and the mannose receptor in tuberculous pleurisy. Infect Immun. 2007;75:5325-37 pubmed AntibodyCD2 Monoclonal Antibody (RPA-2.10), Functional Grade, eBioscience™Et0021b7e4477616-0029-85500µgUS 356MonoclonalAffinity chromatographyMouseBaboon, Chimpanzee, Cynomolgus Monkey, Human, Non-human primate, Porcine, Rhesus MonkeyFlow Cytometry: 0.5 µg/test, Functional assay: Assay-Dependent, Neutralization: Assay-DependentBaboon, Chimpanzee, Cynomolgus Monkey, Human, Non-human primate, Porcine, Rhesus MonkeyRPA-2.10Et 0029 BelgiqueIgG1, kappaEt 0029 Black4° CCD2 (LFA-2) is a monomeric surface antigen (MW range 45-58 kDa) of the human T-lymphocyte lineage that is expressed on all peripheral blood T cells. CD2 is one of the earliest T-cell markers, being present on more than 95% of thymocytes and it is also found on some natural killer cells, but not on B lymphocytes. Monoclonal antibodies directed against CD2 inhibit the formation of rosettes with sheep erythrocytes, indicating that CD2 is the erythrocyte receptor or is closely associated with it. The interaction between CD2 and CD58 stabilizes adhesion between T cells and antigen presenting or target cells. Relatively low affinity of CD2 to CD58 (as measured in solution) is compensated within the two-dimensional cell-cell interface to provide tight adhesion. Moreover, T cell activation induces increased CD2 expression and its lateral mobility, making easier contact between CD2 and CD58. Subsequently, T cell activation causes fixation of CD58-CD2 at sites of cell-cell contact, thereby strengthening intercellular adhesion. CD2 deficiency reduces intestinal inflammation and helps to control infection. Diseases associated with CD2 dysfunction include penis squamous cell carcinoma and immune deficiency due to the absence of the thymus.LiquidFlow Cytometry: 0.5 µg/test, Functional assay: Assay-Dependent, Neutralization: Assay-DependentBOS_3050; Cd2; CD2 antigen; CD2 antigen (p50), sheep red blood cell receptor; CD2 molecule; CD2R; cluster of differentiation 2; Erythrocyte receptor; FLJ46032; LFA2; LFA-2; LFA-3 receptor; Ly37; Ly-37; Lymphocyte antigen 37; OX34; OX-34; OX-34 antigen; OX-45 surface antigen homolog to human T lymphocyte CD2 antigen; Rosette receptor; SRBC; T11; T-cell surface antigen CD2; T-cell surface antigen T11/Leu-5Thermo Fisher Scientific81 Wyman StreetWaltham, MA USA 02451https://www.thermofisher.comheadquarters: USAPIK3R3IdentifiersAliasesPIK3R3, p55, p55-GAMMA, p55PIK, phosphoinositide-3-kinase regulatory subunit 3, PI3KR3External IDsGene location (Human)Chr.Chromosome 1 (human)[1]Band1p34.1Start46,040,140 bp[1]End46,133,036 bp[1]Gene location (Mouse)Chr.Chromosome 4 (mouse)[2]Band4|4 D1Start116,221,618 bp[2]End116,303,056 bp[2]RNA expression patternMore reference expression dataGene ontologyMolecular function•phosphatidylinositol 3-kinase regulator activity•GO:0001948 protein binding•1-phosphatidylinositol-3-kinase activity•phosphotyrosine residue binding•1-phosphatidylinositol-3-kinase regulator activityCellular component•cytosol•phosphatidylinositol 3-kinase complexBiological process•regulation of phosphatidylinositol 3-kinase activity•phosphatidylinositol-3-phosphate biosynthetic process•insulin receptor signaling pathway•positive regulation of protein phosphorylation•cell migration involved in sprouting angiogenesis•positive regulation of gene expression•protein kinase B signaling•positive regulation of cell migration•phosphatidylinositol phosphorylation•phosphatidylinositol biosynthetic processSources:Amigo / QuickGOOrthologsSpeciesHumanMouseEntrezEnsemblUniProtRefSeq (mRNA)NM_001114172NM_001303428NM_001303429NM_001328648NM_001328649
NM_001328650NM_001328651NM_001328652NM_001328653NM_001328654NM_003629
NM_181585NM_001355584NM_001355585NM_001355586RefSeq (protein)NP_001107644NP_001290357NP_001290358NP_001315577NP_001315578
NP_001315579NP_001315580NP_001315581NP_001315582NP_001315583NP_003620
NP_853616NP_001342513NP_001342514NP_001342515Location (UCSC)Chr 1: 46.04 – 46.13 MbChr 4: 116.22 – 116.3 MbPubMed search[3][4]WikidataView/Edit HumanView/Edit MouseBenq Et-0029-b Driver
Phosphatidylinositol 3-kinase regulatory subunit gamma is an enzyme, which in humans is encoded by the PIK3R3gene.[5][6]
Interactions[edit]
PIK3R3 has been shown to interact with Insulin-like growth factor 1 receptor,[7]IRS1[7][8] and Retinoblastoma protein.[9]References[edit]Et0021b7035a48
*^ abcGRCh38: Ensembl release 89: ENSG00000117461 - Ensembl, May 2017
*^ abcGRCm38: Ensembl release 89: ENSMUSG00000028698 - Ensembl, May 2017
*^’Human PubMed Reference:’. National Center for Biotechnology Information, U.S. National Library of Medicine.
*^’Mouse PubMed Reference:’. National Center for Biotechnology Information, U.S. National Library of Medicine.
*^Dey BR, Furlanetto RW, Nissley SP (May 1998). ’Cloning of human p55 gamma, a regulatory subunit of phosphatidylinositol 3-kinase, by a yeast two-hybrid library screen with the insulin-like growth factor-I receptor’. Gene. 209 (1–2): 175–83. doi:10.1016/S0378-1119(98)00045-6. PMID9524259.
*^’Entrez Gene: PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (p55, gamma)’.
*^ abMothe, I; Delahaye L; Filloux C; Pons S; White M F; Van Obberghen E (Dec 1997). ’Interaction of wild type and dominant-negative p55PIK regulatory subunit of phosphatidylinositol 3-kinase with insulin-like growth factor-1 signaling proteins’. Mol. Endocrinol. 11 (13): 1911–23. doi:10.1210/mend.11.13.0029. ISSN0888-8809. PMID9415396.
*^Xia, X; Serrero G (Aug 1999). ’Multiple forms of p55PIK, a regulatory subunit of phosphoinositide 3-kinase, are generated by alternative initiation of translation’. Biochem. J. 341 (3): 831–7. doi:10.1042/0264-6021:3410831. ISSN0264-6021. PMC1220424. PMID10417350.
*^Xia, Xianmin; Cheng Aiwu; Akinmade Damilola; Hamburger Anne W (Mar 2003). ’The N-Terminal 24 Amino Acids of the p55 Gamma Regulatory Subunit of Phosphoinositide 3-Kinase Binds Rb and Induces Cell Cycle Arrest’. Mol. Cell. Biol. 23 (5): 1717–25. doi:10.1128/MCB.23.5.1717-1725.2003. ISSN0270-7306. PMC151709. PMID12588990.Further reading[edit]
*Pons S, Asano T, Glasheen E, et al. (1995). ’The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase’. Mol. Cell. Biol. 15 (8): 4453–65. doi:10.1128/MCB.15.8.4453. PMC230685. PMID7542745.
*Andersson B, Wentland MA, Ricafrente JY, et al. (1996). ’A ’double adaptor’ method for improved shotgun library construction’. Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID8619474.
*Tuscano JM, Engel P, Tedder TF, et al. (1996). ’Involvement of p72syk kinase, p53/56lyn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22’. Eur. J. Immunol. 26 (6): 1246–52. doi:10.1002/eji.1830260610. PMID8647200.
*Takahashi-Tezuka M, Hibi M, Fujitani Y, et al. (1997). ’Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK’. Oncogene. 14 (19): 2273–82. doi:10.1038/sj.onc.1201071. PMID9178903.
*Mothe I, Delahaye L, Filloux C, et al. (1998). ’Interaction of wild type and dominant-negative p55PIK regulatory subunit of phosphatidylinositol 3-kinase with insulin-like growth factor-1 signaling proteins’. Mol. Endocrinol. 11 (13): 1911–23. doi:10.1210/mend.11.13.0029. PMID9415396.
*Xia X, Serrero G (1999). ’Multiple forms of p55PIK, a regulatory subunit of phosphoinositide 3-kinase, are generated by alternative initiation of translation’. Biochem. J. 341 (3): 831–7. doi:10.1042/0264-6021:3410831. PMC1220424. PMID10417350.
*Inukai K, Funaki M, Anai M, et al. (2001). ’Five isoforms of the phosphatidylinositol 3-kinase regulatory subunit exhibit different associations with receptor tyrosine kinases and their tyrosine phosphorylations’. FEBS Lett. 490 (1–2): 32–8. doi:10.1016/S0014-5793(01)02132-9. PMID11172806.
*Hafizi S, Alindri F, Karlsson R, Dahlbäck B (2003). ’Interaction of Axl receptor tyrosine kinase with C1-TEN, a novel C1 domain-containing protein with homology to tensin’. Biochem. Biophys. Res. Commun. 299 (5): 793–800. doi:10.1016/S0006-291X(02)02718-3. PMID12470648.
*Strausberg RL, Feingold EA, Grouse LH, et al. (2003). ’Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences’. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC139241. PMID12477932.
*Xia X, Cheng A, Akinmade D, Hamburger AW (2003). ’The N-Terminal 24 Amino Acids of the p55 Gamma Regulatory Subunit of Phosphoinositide 3-Kinase Binds Rb and Induces Cell Cycle Arrest’. Mol. Cell. Biol. 23 (5): 1717–25. doi:10.1128/MCB.23.5.1717-1725.2003. PMC151709. PMID12588990.
*Ota T, Suzuki Y, Nishikawa T, et al. (2004). ’Complete sequencing and characterization of 21,243 full-length human cDNAs’. Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID14702039.
*Rual JF, Venkatesan K, Hao T, et al. (2005). ’Towards a proteome-scale map of the human protein-protein interaction network’. Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID16189514.
*Soroceanu L, Kharbanda S, Chen R, et al. (2007). ’Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma’. Proc. Natl. Acad. Sci. U.S.A. 104 (9): 3466–71. Bibcode:2007PNAS..104.3466S. doi:10.1073/pnas.0611271104. PMC1802005. PMID17360667.
*Kallin A, Johannessen LE, Cani PD, et al. (2007). ’SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 gamma’. J. Lipid Res. 48 (7): 1628–36. doi:10.1194/jlr.M700136-JLR200. PMID17452746.
Retrieved from ’https://en.wikipedia.org/w/index.php?title=PIK3R3&oldid=920905938
Download: http://gg.gg/ngh82 https://diarynote.indered.space

コメント

最新の日記 一覧

<<  2025年7月  >>
293012345
6789101112
13141516171819
20212223242526
272829303112

お気に入り日記の更新

テーマ別日記一覧

まだテーマがありません

この日記について

日記内を検索